malloclab

文章目录

首先从 csapp 599 页开始照着抄,用的是隐式空闲链表。

发现没有 realloc,那只能自己捏造一个了……

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/*
* mm_realloc - Implemented simply in terms of mm_malloc and mm_free
*/
void *mm_realloc(void *bp, size_t size) {
int asize;
if(size==0)
return NULL;
if(size<=DSIZE)
asize = 2 * DSIZE;
else
asize = DSIZE * ((size + DSIZE + DSIZE - 1) / DSIZE);
size_t oldsize=GET_SIZE(HDRP(bp));
if(oldsize>asize) {
PUT(HDRP(bp), PACK(asize, 1));
PUT(FTRP(bp), PACK(asize, 1));
PUT(HDRP(NEXT_BLKP(bp)), PACK(oldsize-asize, 0));
PUT(FTRP(NEXT_BLKP(bp)), PACK(oldsize-asize, 0));
coalesce(NEXT_BLKP(bp));
return bp;
}
else if(oldsize<asize) {
if(!GET_ALLOC(HDRP(NEXT_BLKP(bp))) && GET_SIZE(HDRP(NEXT_BLKP(bp)))+oldsize>=asize) {
int newsize=GET_SIZE(HDRP(NEXT_BLKP(bp)))+oldsize;
PUT(HDRP(bp), PACK(newsize, 0));
PUT(FTRP(bp), PACK(newsize, 0));
place(bp, asize);
coalesce(NEXT_BLKP(bp));
return bp;
}
else {
void *newptr;
size_t copySize;
newptr = mm_malloc(asize);
if (newptr == NULL)
return NULL;
copySize = GET_SIZE(HDRP(bp));
if (asize < copySize)
copySize = asize;
memcpy(newptr, bp, copySize);
mm_free(bp);
return newptr;
}
}
else
return bp;
}

这样你的 perf 能获得 66 分的好成绩,感天动地。

书抄完了,开始抄网上的代码吧。

这个看一看,那个看一看,懒得写平衡树,那就随便糊一个显式空闲列表+分离适配吧(603页,605页)。

在我的代码中,块的格式是:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
31       0
/--------\ 低
|header |
|--------|
|payload |
|... |
|--------|
|fill(*) |
|... |
|--------|
|footer |
\--------/ 高
分配块
31 0
/--------\ 低
|header |
|--------|
|next |
|prev |
|--------|
|fill(*) |
|... |
|--------|
|footer |
\--------/ 高
空闲

fill(*)是填充的,有可能没有。

然后抄一遍代码,自己糊一个有讨论的 realloc 就可以拿到 89 分的好成绩了。我怀疑这是因为俺的 Intel© Core™ i5-8250U CPU @ 1.60GHz × 4不太行,所以也不改了(

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/*
* mm-naive.c - The fastest, least memory-efficient malloc package.
*
* In this naive approach, a block is allocated by simply incrementing
* the brk pointer. A block is pure payload. There are no headers or
* footers. Blocks are never coalesced or reused. Realloc is
* implemented directly using mm_malloc and mm_free.
*
* NOTE TO STUDENTS: Replace this header comment with your own header
* comment that gives a high level description of your solution.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <unistd.h>
#include <string.h>

#include "mm.h"
#include "memlib.h"

/*********************************************************
* NOTE TO STUDENTS: Before you do anything else, please
* provide your team information in the following struct.
********************************************************/


team_t team = {
/* Team name */
"poorpool",
/* First member's full name */
"Harry Bovik",
/* First member's email address */
"bovik@cs.cmu.edu",
/* Second member's full name (leave blank if none) */
"",
/* Second member's email address (leave blank if none) */
""
};

/* single word (4) or double word (8) alignment */
#define ALIGNMENT 8

/* rounds up to the nearest multiple of ALIGNMENT */
#define ALIGN(size) (((size) + (ALIGNMENT-1)) & ~0x7)

#define SIZE_T_SIZE (ALIGN(sizeof(size_t)))

#define WSIZE 4
#define DSIZE 8
#define CHUNKSIZE (1<<12)

#define MAX(x, y) ((x)>(y)?(x):(y))

#define PACK(size, alloc) ((size) | (alloc))

#define GET(p) (*(unsigned int *)(p))
#define PUT(p, val) (*(unsigned int *)(p) = (val))

/*对于一个void *bp来说,GET_PTR(BP)同时相当于取得他的后继,GET_PTR((unsigned int *)BP+1)相当于取得他的前驱。这里的后继前驱
都是针对显式空闲列表来说的,也就是前后的那个空闲块。务必理解这个概念*/
#define GET_PTR(p) ((unsigned int *)(long)(GET(p)))
#define PUT_PTR(p, ptr) (*(unsigned int *)(p) = ((long)(ptr)))

#define GET_SIZE(p) (GET(p) & ~0x7)
#define GET_ALLOC(p) (GET(p) & 0x1)

#define HDRP(bp) ((char *)(bp) - WSIZE)
#define FTRP(bp) ((char *)(bp) + GET_SIZE(HDRP(bp)) - DSIZE)

#define NEXT_BLKP(bp) ((char *)(bp) + GET_SIZE((char *)(bp) - WSIZE))
#define PREV_BLKP(bp) ((char *)(bp) - GET_SIZE((char *)(bp) - DSIZE))

static void *heap_listp;

#define SIZE1 (1<<4)
#define SIZE2 (1<<5)
#define SIZE3 (1<<6)
#define SIZE4 (1<<7)
#define SIZE5 (1<<8)
#define SIZE6 (1<<9)
#define SIZE7 (1<<10)
#define SIZE8 (1<<11)
#define SIZE9 (1<<12)
#define SIZE10 (1<<13)
#define SIZE11 (1<<14)
#define SIZE12 (1<<15)
#define SIZE13 (1<<16)
#define SIZE14 (1<<17)
#define SIZE15 (1<<18)
#define SIZE16 (1<<19)
#define SIZE17 (1<<20)

#define LISTS_NUM 18

static void *extend_heap(size_t words);
static void *coalesce(void *bp);
static void *find_fit(size_t asize);
static void place(void *bp, size_t asize);
static void insert_list(void *bp);
static size_t get_list_offset(size_t size);
static void delete_list(void *bp);

static void *coalesce(void *bp) {
size_t prev_alloc = GET_ALLOC(FTRP(PREV_BLKP(bp)));
size_t next_alloc = GET_ALLOC(HDRP(NEXT_BLKP(bp)));
size_t size = GET_SIZE(HDRP(bp));
if(prev_alloc && next_alloc)
;
else if(prev_alloc && !next_alloc) {
delete_list(NEXT_BLKP(bp));
size += GET_SIZE(HDRP(NEXT_BLKP(bp)));
PUT(HDRP(bp), PACK(size, 0));
PUT(FTRP(bp), PACK(size, 0));
}
else if(!prev_alloc && next_alloc) {
delete_list(PREV_BLKP(bp));
size += GET_SIZE(HDRP(PREV_BLKP(bp)));
PUT(FTRP(bp), PACK(size, 0));
PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));
bp = PREV_BLKP(bp);
}
else {
delete_list(PREV_BLKP(bp));
delete_list(NEXT_BLKP(bp));
size += GET_SIZE(HDRP(PREV_BLKP(bp))) + GET_SIZE(FTRP(NEXT_BLKP(bp)));
PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));
PUT(FTRP(NEXT_BLKP(bp)), PACK(size, 0));
bp = PREV_BLKP(bp);
}
insert_list(bp);
return bp;
}

static void insert_list(void *bp) {
size_t size = GET_SIZE(HDRP(bp));
size_t index = get_list_offset(size);
if(GET_PTR(heap_listp+WSIZE*index)==NULL) {
PUT_PTR(heap_listp + WSIZE * index, bp);
PUT_PTR(bp, NULL);//next<->NULL
PUT_PTR((unsigned int *)bp + 1, NULL);//prev<->NULL
}
else {
PUT_PTR(bp, GET_PTR(heap_listp + WSIZE * index));//next<-原来的头节点
PUT_PTR(GET_PTR(heap_listp + WSIZE * index) + 1, bp); //头节点prev<-bp
PUT_PTR((unsigned int *)bp + 1, NULL);//bp的prev <- NULL
PUT_PTR(heap_listp + WSIZE * index, bp);//头节点 bp
}
}

static void delete_list(void *bp) {
//这就是双向链表哇
size_t size = GET_SIZE(HDRP(bp));
size_t index = get_list_offset(size);
if(GET_PTR(bp)==NULL && GET_PTR((unsigned int *)bp+1)==NULL)
PUT_PTR(heap_listp + WSIZE * index, NULL);
else if (GET_PTR(bp)==NULL && GET_PTR((unsigned int *)bp+1) != NULL) {
PUT_PTR((GET_PTR((unsigned int*)GET_PTR((unsigned int *)bp+1))), NULL );//bp->prev->next=NULL
PUT_PTR(GET_PTR((unsigned int *)bp + 1), NULL); //bp前驱指针prev=NULL
}
else if (GET_PTR(bp) != NULL && GET_PTR((unsigned int *)bp + 1) == NULL){
PUT_PTR(heap_listp + WSIZE * index, GET_PTR(bp));
PUT_PTR(GET_PTR(bp) + 1, NULL); //prev=NULL
}
else if (GET_PTR(bp) != NULL && GET_PTR((unsigned int *)bp + 1) != NULL) {
PUT_PTR(GET_PTR((unsigned int *)bp + 1), GET_PTR(bp));
PUT_PTR(GET_PTR(bp) + 1, GET_PTR((unsigned int*)bp + 1));//bp->next->prev = bp->prev
}
}

size_t get_list_offset(size_t size) {
if(size<=SIZE1)
return 0;
else if(size<=SIZE2)
return 1;
else if(size<=SIZE3)
return 2;
else if(size<=SIZE4)
return 3;
else if(size<=SIZE5)
return 4;
else if(size<=SIZE6)
return 5;
else if(size<=SIZE7)
return 6;
else if(size<=SIZE8)
return 7;
else if(size<=SIZE9)
return 8;
else if(size<=SIZE10)
return 9;
else if(size<=SIZE11)
return 10;
else if(size<=SIZE12)
return 11;
else if(size<=SIZE13)
return 12;
else if(size<=SIZE14)
return 13;
else if(size<=SIZE15)
return 14;
else if(size<=SIZE16)
return 15;
else if(size<=SIZE17)
return 16;
else
return 17;
}

static void *extend_heap(size_t words) {
char *bp;
size_t size;
size = (words % 2) ? (words + 1) * WSIZE : words * WSIZE;
if((long)(bp = mem_sbrk(size))==-1)
return NULL;
PUT(HDRP(bp), PACK(size, 0));
PUT(FTRP(bp), PACK(size, 0));
PUT(HDRP(NEXT_BLKP(bp)), PACK(0, 1));
return coalesce(bp);
}
/*
* mm_init - initialize the malloc package.
*/

int mm_init(void)
{
if((heap_listp = mem_sbrk((4+LISTS_NUM)*WSIZE)) == (void *)-1)
return -1;
PUT(heap_listp + LISTS_NUM * WSIZE, 0);
PUT(heap_listp + (1 + LISTS_NUM) * WSIZE, PACK(DSIZE, 1));
PUT(heap_listp + (2 + LISTS_NUM) * WSIZE, PACK(DSIZE, 1));
PUT(heap_listp + (3 + LISTS_NUM) * WSIZE, PACK(0, 1));
int i;
for(i=0; i<LISTS_NUM; i++)
PUT_PTR(heap_listp + WSIZE * i, NULL);
if(extend_heap(CHUNKSIZE/WSIZE)==NULL)
return -1;
return 0;
}

static void *find_fit(size_t asize) {
size_t index=get_list_offset(asize);
unsigned int *ptr;
while(index<18) {
ptr = GET_PTR(heap_listp + WSIZE * index);
while(ptr!=NULL) {
if(GET_SIZE(HDRP(ptr))>=asize)
return (void *)ptr;
ptr = GET_PTR(ptr);
}
index++;
}
return NULL;
}
static void place(void *bp, size_t asize) {
size_t csize = GET_SIZE(HDRP(bp));
delete_list(bp);
if(csize-asize>=2*DSIZE) {
PUT(HDRP(bp), PACK(asize, 1));
PUT(FTRP(bp), PACK(asize, 1));
bp = NEXT_BLKP(bp);
PUT(HDRP(bp), PACK(csize-asize, 0));
PUT(FTRP(bp), PACK(csize-asize, 0));
insert_list(bp);
}
else {
PUT(HDRP(bp), PACK(csize, 1));
PUT(FTRP(bp), PACK(csize, 1));
}
}
static void pppplace(void *bp, size_t asize) {
size_t csize = GET_SIZE(HDRP(bp));
if(csize-asize>=2*DSIZE) {
PUT(HDRP(bp), PACK(asize, 1));
PUT(FTRP(bp), PACK(asize, 1));
bp = NEXT_BLKP(bp);
PUT(HDRP(bp), PACK(csize-asize, 0));
PUT(FTRP(bp), PACK(csize-asize, 0));
insert_list(bp);
}
else {
PUT(HDRP(bp), PACK(csize, 1));
PUT(FTRP(bp), PACK(csize, 1));
}
}
/*
* mm_malloc - Allocate a block by incrementing the brk pointer.
* Always allocate a block whose size is a multiple of the alignment.
*/

void *mm_malloc(size_t size)
{
size_t asize;
size_t extendsize;
char *bp;
if(size==0)
return NULL;
if(size<=DSIZE)
asize = 2 * DSIZE;
else
asize = DSIZE * ((size + DSIZE + DSIZE - 1) / DSIZE);
if((bp=find_fit(asize))!=NULL) {
place(bp, asize);
return bp;
}
extendsize = MAX(asize, CHUNKSIZE);
if((bp=extend_heap(extendsize/WSIZE))==NULL)
return NULL;
place(bp, asize);
// printf("%%p:%p\n", bp);
return bp;
}

/*
* mm_free - Freeing a block does nothing.
*/
void mm_free(void *bp)
{
size_t size = GET_SIZE(HDRP(bp));
PUT(HDRP(bp), PACK(size, 0));
PUT(FTRP(bp), PACK(size, 0));
coalesce(bp);
}

/*
* mm_realloc - Implemented simply in terms of mm_malloc and mm_free
*/
void *mm_realloc(void *bp, size_t size)
{
size_t asize;
if(size==0)
return NULL;
if(size<=DSIZE)
asize = 2 * DSIZE;
else
asize = DSIZE * ((size + DSIZE + DSIZE - 1) / DSIZE);
if(bp == NULL)
return mm_malloc(asize);
size_t oldsize=GET_SIZE(HDRP(bp));
if(oldsize>asize)
return bp;
else if(oldsize<asize) {
if(!GET_ALLOC(HDRP(NEXT_BLKP(bp))) && GET_SIZE(HDRP(NEXT_BLKP(bp)))+oldsize>=asize) {
int newsize=GET_SIZE(HDRP(NEXT_BLKP(bp)))+oldsize;
delete_list(NEXT_BLKP(bp));
PUT(HDRP(bp), PACK(newsize, 1));
PUT(FTRP(bp), PACK(newsize, 1));
return bp;
}
else {
void *newptr;
newptr = mm_malloc(asize);
if (newptr == NULL)
return NULL;
memcpy(newptr, bp, asize);
mm_free(bp);
return newptr;
}
}
else
return bp;
}